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Cristóbal Cortés a,*, Luis I. Dı́ez a, Antonio Campo b

a Center of Research of Energy Resources and Consumption, Department of Mechanical Engineering, University of Zaragoza,

Marı́a de Luna 3, 50018 Zaragoza, Spain
b School of Engineering, The University of Vermont, Burlington, VT 05405, USA

Received 31 July 2007
Available online 21 December 2007
Abstract

This paper discusses the thermal calculation of composite, metallic fins of variable thickness. In the simpler case of a constant-thick-
ness (rectangular profile), the complete procedure involves first the analytical solution of the two-dimensional, two-material conduction
problem, under the form of an infinite series of orthogonal eigenfunctions. Then the limit as Bi ? 0 is sought, also analytically, which
simplifies the series to its first term and permits to express the fin efficiency in closed form. This limit is equivalent to the usual 1D, Mur-
ray–Gardner, or thin-fin, approximation of ordinary, single-material fins, provided that an averaged thermal conductivity is used.

For variable thickness (tapered profile), no analytical solutions have been found, so that resort should be made to numerical methods.
Since the adoption of dimensional parameters is advisable in that context, the paper first reviews the industrial application of composite
fins and selects a comprehensive set of material pairs of interest. Subsequently, two arbitrary but representative geometries and a
reasonable range of dimensions and convection coefficients are fixed, thus assembling a rather exhaustive matrix of case-studies. Numer-
ical calculations are compared to approximate results, in order to ascertain two facts: whether a single parameter exists (thermal length)
that allows an accurate prediction of fin efficiency, and whether this parameter can be expressed in terms of an averaged thermal
conductivity. Well within the bounds of usual engineering accuracy, the answer to both questions is affirmative. Therefore, calculation
methods of ordinary fins and composite, constant-thickness fins are shown to be applicable to the most general case. Error bounds and
specific recommendations for practical problems are also given.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept of a composite fin, made of a substrate and
a coating of two different materials, has received a scarce,
almost perfunctory, treatment in the heat transfer litera-
ture. The subject appeared very early indeed, with the stud-
ies of Barker [1,2] on the problem of constant-thickness in
Cartesian and axial-cylindrical coordinates, i.e., straight
and pin-type fins. Barker used the theory of orthogonal
expansions [3] and found out the exact, 2D series solution.
By analyzing the eigenvalues, he was subsequently able to
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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show that the series converged to its first term for a Biot
number sufficiently small, and that this approximation
was equivalent to the usual 1D treatment if a cross-sec-
tional area average of the thermal conductivities is used.
In other words, approximate 1D conduction still prevails
under the usual slender-fin conditions, even in the case of
a composite of two different materials.

Only a few studies were published afterwards. The exact
solution for the annular fin of constant-thickness was given
in [4], and compared to the approximation of Barker
adapted to that geometry. It was concluded that the 2D
calculation was necessary in many instances, but the range
of situations included Biot numbers and ratios of thick-
nesses much larger than it is normal in metallic, dissipative
fin applications. More recently, Lalot et al. [5] rediscovered
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Nomenclature

A cross-sectional area, m2

Bi Biot number, ht/k
f(. . .) unspecified function
h convection coefficient, W/m2 K
k thermal conductivity, W/m K
L fin length, m
m fin parameter, m�1

mL fin thermal length
q heat transfer rate, W
q0 heat transfer rate per unit length, W/m
r radius, m
T temperature, �C
t fin half-thickness or coating thickness, m
V volume, m3

x longitudinal coordinate, m
y fin half-thickness function, m

Greek symbols
e error (%)
g fin efficiency

ki eigenvalue, m�1

h dimensionless temperature, (T � T1)/(Tb � T1)

Subscripts

a analytical
av averaged
b fin base
c coating
eq equivalent, as defined in relation to Eq. (21)
n numerical
s substrate
t fin tip
1 external fluid

Superscript

* dimensionless

2 Which necessitates a special application of the theory of orthogonal
series in composite media, and eventually reduces itself to the usual
approximation: a treatment of the insulation which is locally 1D in the
transverse direction.

3 Also in Ref. [13], a thin metallic cladding on a fin is given a
1D(coating)/2D(substrate) treatment, analytical and numerical, which is
mostly of interest if the substrate is an insulation.

4 Even fundamental studies are not devoid of ambiguities. For instance,
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the same problem. In a rather contorted, but interesting
way, that avoided the derivation of an infinite series, they
were able to parallel the eigenvalue analysis of Barker.
The result was analogous: the fin can be treated as an
ordinary, single-material fin by the intuitive expedient of
averaging thermal conductivities in proportion to cross-
sectional areas.1

Lalot et al. also quantified the accuracy of the approxi-
mation and found it excellent (0.01% in fin efficiency) for
the usual range of parameters found in metallic fins (thick-
nesses up to 1 mm; maximum thickness ratio around 50%;
conductivity ratios near unity; Bi of the order of thou-
sandths). Other studies have also found a good accuracy
in similar applications [6,7]. In [6], the range of conductiv-
ity ratios was extended up to 20 by considering different
material pairs. Campo [7] additionally postulated, on sta-
tistical grounds, that the arithmetic average of thermal con-
ductivities is always an upper bound for the actual fin
performance.

All these studies dealt with a composite fin made of two
metals, for heat transfer enhancement or protective pur-
poses. There is also the theoretically related problem of
an ordinary fin performing under fouled or frosted condi-
tions, in which the coating is a thermally insulating mate-
rial and higher thickness ratios may exist. Although the
2D solution is the same, its reduction to an engineering
approximation is completely different, due to the fact that
the diverging values of conductivities and thicknesses make
ambiguous the condition Bi ? 0. Or in other words, it
1 The fact that they are variable is immaterial, since they are both
proportional to the radius.
might be that an approximately 1D thermal field prevails
in the substrate (fin) but not in the coating (insulation).
For constant-thickness, an ‘‘intermediate” solution can
then be sought, in which 1D and 2D temperatures are
solved in the substrate and coating, respectively.2 This
problem was given a primitive treatment by means of
‘‘thermal resistances” in Refs. [8,9], the latter also advanc-
ing some numerical and analytical work. The strict mathe-
matical theory was first developed in [10] for a straight fin
and afterwards extended to the annular geometry in
[11,12]. Sometimes, archival literature mixes this problem
with that of a two-material fin, which can be confusing; a
good example is Ref. [4] mentioned above.3

As for our problem of a composite, metallic fin, quanti-
fication of error bounds of the 1D approximation has not
been rigorous nor exhaustive, perhaps due to the fact that
an analytic limit was known that is explained very
intuitively, and thus always presumed correct without
questioning.4 Other point of argument is the value of the
conductivity ratio. Considering some applications (see
the errors reported by Lalot et al. [5] refer to the difference in using exact
or approximate figures for the first eigenvalue, which can be shown to be
far less restrictive than to compare the full series, i.e., the exact solution,
with its first term.
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below), it can range over two or three orders-of-magnitude
around unity, even for metals. To what extent is then appli-
cable the 1D approximation in the terms imagined by Bar-
ker? Finally, two-material fins of variable thickness may be
of interest for obvious reasons of volume optimization, as
ordinary fins are. However, the analytic theory of compos-
ite media cannot handle this kind of problems. Therefore,
there is not a limiting process that could extract a 1D
approximation from the general solution, and a clearly
defined procedure of calculation is missing. Some studies
have explored tentatively the rather evident expedient of
generalizing the average conductivity and trying to qualify
the approximation with reference to numerical solutions
[6,14]. But, again, there is a lack of sound and systematic
work in this respect.

In this paper, we attempt to give an answer to all these
questions by means of the following sequence of consider-
ations. Firstly, a review of fin theory from a general point
of view is assembled, with the purpose of advancing a rea-
sonable conjecture for the approximation of composite fins
of variable thickness. Next, attention is directed towards
industrial applications, reviewing specific materials used,
which gives an ample interval of conductivity ratios. Since
numerical calculations are intended, particular cases and
typical ranges of dimensional parameters are needed in
addition. We propose to analyze two families of geome-
tries: the straight fin of lineal profile and the annular fin
of hyperbolic profile, along with a reasonable range of geo-
metric dimensions and heat transfer coefficients. This pro-
vides both specific cases to work with and practical ranges
of dimensionless parameters (essentially the Biot number)
within which the accuracy of the approximation is of
interest.

Finally, results of the numerical, 2D calculations are
compared with the 1D approximation and the ensuing
errors are analyzed. Although based on a necessarily finite
and arbitrary set of case-studies, results may serve to clarify
whether simple calculations are accurate enough for a wide
range of practical applications. In fact, the extreme values
of conductivity ratios combined with a tapered longitudi-
nal profile assure that any 1D approximation will incur
the highest possible errors. Thus, the present study can
be regarded also as a general assessment of the engineering
treatment of composite fins of slender profile.

2. Fin theory and its application to composite fins

We will follow the simple and approximate assumptions
of the usual analysis of fins. These are: (a) steady state; (b)
no internal heat sources; (c) isotropic and homogeneous
medium and constant thermal conductivity k; (d) uniform
and linear boundary conditions – constant values of tem-
perature of the fin base Tb, surrounding fluid temperature
T1 and convection coefficient h; (e) negligible heat transfer
from the fin tip; (f) symmetrically adiabatic mid-plane. In
addition, for composite fins: (g) nil contact resistance
between dissimilar materials. We will assume all these valid
either for a 2D or an approximate 1D problem. An adia-
batic tip seems to imply some limitation, since it is not gen-
erally warranted in 2D. However, the generalization would
only necessitate to show that tip heat transfer becomes neg-
ligible along with cross-sectional area for a slender geome-
try, a side question which is best avoided.

The basic theory of ordinary fins can be discussed in the
following terms. Consider as an example a straight fin of
half-thickness t and length L. If all parameters are accounted
for, the heat dissipation per unit width q0 (W/m) must be

q0 ¼ f ðt; L; k; h; T b � T1Þ ð1Þ
where we use the notation f(. . .) to signify some generic
function of the specified arguments. It should be noted that
the problem is linear and homogeneous by virtue of
hypotheses (b), (c) and (d) above, so that only the differ-
ence Tb � T1 appears as a parameter. By simple dimen-
sional reasoning, Eq. (1) can be made dimensionless in
this way:

g ¼ q0

hLðT b � T1Þ
¼ f

ht
k
;

t
L

� �
¼ f Bi;

t
L

� �
ð2Þ

where g is the so-called fin efficiency, usually interpreted as
the fraction of maximum possible heat transfer attained.
Fin performance thus depends only on two parameters:
the Biot number Bi and the geometric ratio t/L. However,
as it is commonly known, this relation is further simplified
under the 1D approximation, to give

g ¼ f ðmLÞ ð3Þ
where the quantity mL is dimensionless and m (m�1) is de-
fined as

m ¼ h
kt

� �1
2

ð4Þ

Frequently, mL is conceived as the ‘‘thermal length” of the
fin. Other interpretation consists in realizing that it is sim-
ply a particular combination of the original dimensionless
parameters:

mL ¼ h
kt

� �1
2

L ¼ ht
k

L
t

� �2
" #1

2

¼ Bi
1
2

t=L
ð5Þ

The reduction of Eq. (2) to Eq. (3) can be given diverse
explanations. For the case of constant-thickness, a complete
analytic rendition exists, as put forward by Levitsky [15].
Since the fin has a finite thickness t, the exact temperature
field is two-dimensional and, if t is a constant, the problem
is solvable by the method of separation of variables. The ex-
act formula for the fin efficiency turns out to be

g ¼
X1
i¼1

Ci
tanhðkiLÞ

kiL
cosðkitÞ ð6Þ

In this expression, ki represents an infinite number of posi-
tive eigenvalues given by the implicit relation kit tan(kit) =
Bi, i.e., in such a way that the series kit is only a function of
Bi. Also, the series of constants Ci is an exclusive function
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of kit. Therefore, the formula complies with the format of
Eq. (2). On the other hand, if one assumes a 1D tempera-
ture field, a simple, ordinary differential equation can be
written and solved, from which fin efficiency is derived in
a form compliant with Eq. (3):

g ¼ tanhðmLÞ
mL

ð7Þ

The simplification of Eq. (6) to Eq. (7) can be derived as an
analytical limit.5 In an order-of-magnitude sense, the Biot
number Bi = ht/k modulates the local, transverse tempera-
ture differences inside and outside the material, so that
when Bi ? 0, the fin is locally isothermal. Therefore, the
1D approximation amounts to assume a vanishingly small
Biot number. Under this circumstance, it follows that kit ?
Bi1/2 = mt ? 0 by virtue of the eigenvalue relation, and
that C1 ? 1, Ci ? 0 for i > 1. Substituting in Eq. (6), the
infinite series of the exact solution reduces to its first term,
and this coincides in turn with Eq. (7). It should be noted in
passing that the analysis of Levitsky was originally aimed
at proving that the condition for a slender, 1D-tractable
fin is Bi ? 0, and not simply the geometric condition
t/L ? 0. However, for normal metallic applications, ther-
mally slender fins are also geometrically slender, or,
according to Eq. (5), their thermal length is not small.

Eqs. (1)–(5) and their basic meaning continue to hold for
a straight fin of variable thickness, whose half-profile fol-
lows some given function y(x). For specific y(x), advanced
analytical methods allow to obtain 2D solutions. However,
their form is such that an expression analogous to Eq. (6)
cannot be written, which dismisses the existence of a series
solution and thus of an analytical, easily derived, limit. But
if we accept an approximate 1D flow of heat, the equation
for the temperature field h(x) is [17]:

d

dx
y

dh
dx

� �
� h

k
h ¼ 0 ð8Þ

Solutions h(x) are available in the literature for specific
functions y(x). For a generic y(x), the basic dependency
can be demonstrated as follows. First, redefine the param-
eter t as the half-thickness at a fixed x, for instance the root
of the fin, and use L and t to make x and y(x) dimension-
less, respectively: x* = x/L, y* = y/t. Eq. (8) is then rear-
ranged as

d

dx�
y�

dh
dx�

� �
� h

kt
L2h ¼ 0 ð9Þ

Adopting the definition of Eq. (4), the last coefficient is
m2L2. Therefore, since boundary conditions do not intro-
duce any additional parameter, the temperature h is only
a function of x* and mL, for a given dimensionless profile
y*(x*). The fin efficiency is now written as
5 In fact, a limit analogous to that found in the reduction of the Fourier
problem to a lumped capacitance transient, see for instance [16].
g ¼ q0

hLðT b � T1Þ
¼
R L

0
hðT � T1Þdx

hLðT b � T1Þ
¼
Z 1

0

hdx� ð10Þ

and, since h = f(x*,mL), it follows that g = f(mL), con-
forming to Eq. (3). Of course, g will depend additionally
on any geometric variable introduced by the dimensionless
function y*(x*). For instance, for realistic fins with finite tip
thickness, on the ratio tt/tb.

There is however a condition that may be regarded as
supplementary to Bi ? 0. Eqs. (8) and (9) substitute the
length-of-arc of the profile y(x) by x and its total length
by L, which is usually called the ‘‘length-of-arc assump-
tion” [18]. For a geometrically slender-fin, this cannot be
considered as an independent restriction, obviously, but it
can be for a thermally slender one, and then g still depends
on t/L. In any case, as we have seen, this is not important
for practical fins, so that we will adopt the assumption in
what follows.

Although presented for straight fins, the discussion
would have been similar for the annular and spine geome-
tries. The radii ratio rt/rb is an additional parameter in the
first case, obviously, and Eqs. (6)–(10) would have had dif-
ferent forms, but the ideas of the 1D approximation and
the ensuing thermal length, Eqs. (3) and (4), are exactly
the same.

For a composite of two dissimilar materials, an analo-
gous discussion can be pursued, at least partially. Listing
parameters, the exact efficiency will be for instance, for
the straight fin of constant-thickness:

g ¼ f Bi;
ts þ tc

L
;
tc

ts

;
kc

ks

� �
ð11Þ

where the subscript s denotes the fin substrate and the sub-
script c denotes the coating. Under the 1D approximation,
one may speculate that Eq. (11) reduces to one of these
equations

g � f mavL;
tc

ts

;
kc

ks

� �
ð12aÞ

g � f mavLð Þ ð12bÞ

g � tanhðmavLÞ
mavL

ð12cÞ

with

mav ¼
h

kavðts þ tcÞ

� �1
2

ð13Þ

In other words, perhaps an effective or averaged thermal
length may be defined with the total half-thickness ts + tc

and some sort of average kav of the thermal conductivities
of the two materials. With that average, it might be that (a)
the overall thermal and geometrical parameters combine
but g be still a function of the material thermal and geo-
metric ratios, (b) additionally g be independent of those
material ratios, or (c) additionally g be the same function

of the thermal length as the ordinary fin of the same

geometry.
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As before, the case of constant-thickness has an analyt-
ical 2D solution obtainable by the method of orthogonal
expansions in composite media [2], i.e., a generalization
of Eq. (6) exists that gives the exact efficiency of the com-
posite fin according to the format of Eq. (11). Similarly,
its simplification as Bi ? 0 is a more involved process,
but analogous to that described above. It elegantly comes
out with the simpler option of Eq. (12c), in favor of the
more complicated Eqs. (12a) and (12b). With regard to
the exact form of the parameter kav, it is an arithmetic aver-
age weighted with the thicknesses of the materials for the
straight [2] and annular [5] fins, and with the square radius
and difference of square radii for the pin fin [2]. Therefore,
it can be interpreted as an average in proportion to the
cross-sectional areas:

kav ¼
ksAs þ kcAc

As þ Ac

ð14Þ

For composite fins of variable thickness, there are not
analytical 2D solutions available, but if approximate 1D
conduction is accepted, substrate (s) and coating (c) tem-
peratures are forcibly equal, obeying the equation

d

dx
½ksys þ kcðyc � ysÞ�

dh
dx

� �� 	
� hh ¼ 0 ð15Þ

Now analytical results are understandable from a simpler
perspective: for constant-thickness, ys, yc = const., the fac-
tor multiplying dh/dx in Eq. (15) leaves the derivative sign
and we recover Eq. (8) with an apparent conductivity given
by Eq. (14) – and also a constant y = yc.

For variable thickness and simple forms of the functions
ys(x), yc(x), Eq. (15) will surely admit analytical solutions
dependent on the thermal and geometric ratios kc/ks,
tc/ts. But there is a prospect more interesting to explore.
Is it possible that, for any form of the profile, effective or
averaged fin thermal conductivity and length exist that
render the calculation as intuitive as in the case of con-
stant-thickness?

As laid out in the introduction, we investigate numeri-
cally the question, trying to ascertain if Eqs. (13) and
(14) may serve in the general case to accurately calculate
fin efficiency, and to what level of simplicity, among those
exemplified by Eq. (12). As a reasonable hypothesis, and
based on preliminary studies, we generalize Eq. (14) by
the simple expedient of taking average cross-sectional
areas, which is equivalent to a volume–weighted average:

kav ¼
ksV s þ kcV c

V s þ V c

ð16Þ

We attempt to ascertain however if better alternatives exist.
Geometries tested are selected rather arbitrarily, but
dimensions and thermal parameters are representative of
industrial practice. In relation with this, there is an impor-
tant point. The thermal ratio kc/ks of practical, composite,
metallic fins can differ widely from unity. This may render
confuse the Bi ? 0 limit necessary for enforcing the 1D
approximation because Bi can be indeed small for one
material but large for the other. Order-of-magnitude rea-
soning may then become awkward – see Ref. [10] for a
good example. Since our study is based on numerical, 2D
calculations that accurately approximate the exact solu-
tion, we take the path of least resistance in this respect. Ex-
treme (though reasonable) values of kc/ks are adopted, and
the study is simply extended to them, to see if the compos-
ite can still be calculated by the 1D fin approximation.
Moreover, we can also speculate if an average definition
of Bi could suffice itself to establish how closely the approx-
imation is met. In other words, we will put under test a Biot
number defined as

Biav ¼
hðts;b þ tcÞ

kav

ð17Þ

where a reasonable (though arbitrary) characteristic length
based on the total thickness at the fin base is used.

3. Composite fins: applications and materials

We may perfectly classify the applications by the magni-
tude of the thermal conductivity ratio kc/ks. If it is greater
than unity, then the coating material is more conductive
than the substrate. A good example is found in the conven-
tional industrial techniques of galvanizing or aluminizing,
where a steel piece is coated by a thin layer of zinc or alu-
minum. To impregnate this layer, the final phase of the
manufacturing process requires the immersion of the sub-
strate in a bath of liquid coating [19]. The usual goal is
to provide a carbon steel frame with a self-protective layer
against corrosive environments. Application of this kind of
composite fins is normally seen in high-performance
exchangers, in which an enhanced heat transfer is obtained
as a side-effect [5]. This kind of material combinations has
been selected for the simulations, yielding conductivity
ratios moderately greater than one. To increase the range
of kc/ks, also an aluminum coating on a stainless steel sub-
strate has been considered. The thermal spray technique
makes possible the deposition of aluminum multi-micro-
layers on this surface material, as well as on carbon steel
and aluminum alloys [20].

The opposite situation of a coating of lower thermal
conductivity than the substrate is largely found in finned,
compact heat exchangers framed with a copper alloy but
covered with a thin, protective layer of stainless steel.
The copper is selected due to its high thermal conductivity
and ease of fabrication; however, it is weak and oxidizes
rapidly at high temperatures. The copper is protected and
strengthened by a coating of stainless steel, which can be
metallurgically bonded to the substrate by electroplating
or dipping [20,21]. In the present work, two different sub-
strates are analyzed, providing different conductivity ratios:
a 15% Zn copper brass and a non-alloyed free-oxygen
copper.

Table 1 summarizes the five combinations of coating/
substrate materials selected, and the values considered for



Table 1
Material combinations and their thermal conductivities

Combination Substrate Coating ks (W/m K) kc (W/m K) kc/ks

#1 Stainless steel, 20% Cr–15% Ni Aluminum, 99.5% 15 204 13.60
#2 Carbon steel, 0.5% C Aluminum, 99.5% 54 204 3.78
#3 Carbon steel, 0.5% C Zinc, 99.9% 54 112 2.07
#4 Copper brass, 15% Zn Stainless steel, 20% Cr–15% Ni 159 15 0.09
#5 Oxygen-free copper, 99.3% Stainless steel, 20% Cr–15% Ni 376 15 0.04
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their thermal conductivities [22]. Although this work is
focused on the performance of metallic fins, the range of
the ratio kc/ks is quite wide, from 0.04 to 13.6, perfectly
compatible with other kinds of situations. For instance, a
thin layer of ice on steel will be also tractable by the meth-
ods developed here.

4. Case-studies

Two geometries have been arbitrarily adopted as the
starting point for defining different case-studies. Firstly,
the basic linear variation in a two-dimensional geometry
with realistic, finite tip is considered, i.e., a straight fin of
trapezoidal profile. In the second place, the annular geom-
etry and a non-linear profile are combined in the annular
hyperbolic fin. Sketches are displayed in Figs. 1 and 2, rep-
resenting the upper symmetric half and with a vertical scale
greatly exaggerated.

A coating of constant-thickness tc on a variable sub-
strate has been assumed in any case, since it is the logical
option for most manufacturing processes. Note that tc is
defined in the vertical direction, rather than normal to
the surface. Given the geometrical slenderness of the fins,
this is mostly indifferent, and has the advantage of a sim-
pler coating geometry, of constant cross-sectional area in
the case of a non-linear profile. Also for simplicity, the
form of the profile is established for the total thickness
yc, and then the substrate form defined as ys = yc � tc. This
is of course not very compatible with an actual coating
ct
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L
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Fig. 1. Composite straight fi
process on a non-linear profile, but again of little impor-
tance for thin geometries.

Dimensions of practical applications are, typically: sub-
strate half-thickness ts = 0.1–0.5 mm; coating thickness
tc = 30–80 lm; length L = 5–40 mm; radius at the base
rb = 5–15 mm, radii ratio rt/rb = 1.5–3. Starting from these
reference figures, different dimensions have been simulated
in the present work, according to the objectives of the
investigation.

For the straight fin of trapezoidal profile, length has
been prescribed equal to 10 mm and the following geomet-
ric parameters have been varied: substrate half-thickness at
the base ts,b = 0.4–0.6 mm; substrate half-thickness at the
tip ts,t = 0.2–0.3 mm; coating thickness tc = 40–80 lm. In
the case of the annular hyperbolic fin, length has also been
fixed to 10 mm and the same ranges considered for ts,b and
tc, but fin aspect has been varied by changing the radius at
the base rb from 5 to 10 mm.

Tables 2 and 3 summarize the complete set of geometric
arrangements and give the volume-averaged thermal con-
ductivities for every material pair and case, calculated after
Eq. (16). As the tables show, the substrate geometry
remains the same for the first five cases, and the coating
is progressively thickened. The following three cases in
Table 3 correspond to a progressive reduction of the radius
of the fin base, maintaining the same geometry for sub-
strate and coating. In the two last cases of both tables,
substrate and coating are proportionally thickened main-
taining the same ratio tc/ts.
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Fig. 2. Composite annular fin of hyperbolic profile.

Table 2
Set of geometric cases for the straight fin of trapezoidal profile
(L = 10 mm)

ts,b (mm) ts,t (mm) tc (mm) kav (W/m K)

#1 #2 #3 #4 #5

0.4 0.2 0.04 37.24 71.65 60.82 142.06 333.53
0.05 42.00 75.43 62.29 138.43 324.43
0.06 46.50 79.00 63.67 135.00 315.83
0.07 50.76 82.38 64.97 131.76 307.70
0.08 54.79 85.58 66.21 128.68 300.00

0.5 0.25 0.05 37.24 71.65 60.82 142.06 333.53
0.6 0.3 0.06 37.24 71.65 60.82 142.06 333.53

Table 3
Set of geometric cases for the annular fin of hyperbolic profile
(L = 10 mm)

ts,b (mm) tc (mm) rb (mm) kav (W/m K)

#1 #2 #3 #4 #5

0.4 0.04 10.0 40.77 74.45 61.91 139.36 326.77
0.05 46.50 79.00 63.67 135.00 315.83
0.06 51.98 83.35 65.35 130.83 305.37
0.07 57.22 87.51 66.96 126.83 295.35
0.08 62.25 91.50 68.50 123.00 285.75

0.4 0.04 8.5 42.29 75.66 62.37 138.21 323.88
6.5 45.40 78.13 63.33 135.84 317.94
5.0 49.36 81.27 64.55 132.82 310.36

0.5 0.05 10.0 40.77 74.45 61.91 139.36 326.77
0.6 0.06 10.0 40.77 74.45 61.91 139.36 326.77
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As for the thermal conditions, temperatures of the fin
base and the fluid have been fixed to Tb = 200 �C and
T1 = 30 �C, respectively. Of course, the problem is homo-
geneous, so that specific temperature values do not have
any influence; a reasonable difference Tb � T1 = 170 K
has the sole effect of assuring adequate levels of total heat
transfer (W/m or W) in view of the precision of the numer-
ical calculation. Convection coefficient has been given val-
ues within the reasonable interval h = 40–100 W/m2 K.
5. Numerical method

Adopted case-studies have been solved numerically by
the Finite Element Method (FEM). This linear, steady,
2D conduction problem is conveniently handled by the
simplest form of FEM, encompassing triangular elements
and linear interpolating functions, exactly as described in
[23]. Also the FEM is more suited to curved boundaries
and moderate disparity of length scales, as it is the case.

Computed runs comprised a grand total of 17 geome-
tries times five material pairs, i.e., the 85 cases shown in
Tables 2 and 3, times (typically) 5 values of the convection
coefficient. In order to ease such an amount of computa-
tions, the commercial code FEHT has been used [24],
which provides automatic grid definition and refinement,
among other features. With a minimum value of the geo-
metric ratio tc/ts = 0.1, proper attention has been paid
when meshing the coating, in order to avoid too elongated
elements. A grid of 3 840 triangular elements has been used
in the calculation of half the fin geometry, providing 2000
nodes for temperature values. In all cases, one third of the
elements are located in the coating and the rest in the sub-
strate (the coating domain ranges from 11% to 21% of the
total in the straight fin and from 13% to 24% in the annular
fin). Calculation of heat dissipation was effected through
piece-wise linear interpolation of the computed boundary
temperatures.

To assure numerical accuracy in the results, grid refine-
ment studies were undertaken. For this kind of problem, a
simple criterion suffices; accordingly, mesh spacing was
reduced by a factor of 4 for selected cases and the (dimen-
sional) total heat transfer results compared. For the most
unfavorable cases of the highest Biot numbers, discrepan-
cies were always lower than 0.6%, thus confirming the
grid-independence of the calculations.

Finally, for the 1D approximation, the parameter mav is
given by Eqs. (13) and (16), where thicknesses t and ts must
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be understood at the base of the fin. Formulae that substi-
tute Eq. (7) for fins of variable thickness are found in text-
books [17]. In the case of a straight fin of trapezoidal
profile:

g ¼ 1

mL
K1ð2mL

1
2
eL

1
2
tÞI1ð2mLeÞ � I1ð2mL

1
2
eL

1
2
tÞK1ð2mLeÞ

K1ð2mL
1
2
eL

1
2
tÞI0ð2mLeÞ þ I1ð2mL

1
2
eL

1
2
tÞK0ð2mLeÞ

ð18Þ

and for the annular hyperbolic fin:

g¼ 2rb
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In Eq. (18), we have used the fictitious length Le for sim-
plicity, see Fig. 1. The approximation of the composite
fin consists in substituting mav for m, as exemplified by
Eq. (12c).
6. Results and discussion

We begin with some parametric studies under varying
dimensional magnitudes. Figs. 3 and 4 represent fin effi-
ciency for fixed substrate geometry and heat transfer condi-
tions (and curvature for the annular fin), increasing coating
thicknesses. In Figs. 5 and 6, a fixed geometry for the whole
composite is examined under variable heat transfer coeffi-
80

85

90

95

100

0.03 0.04 0.05

η 
(%

)

tc

h = 100 W/m2K, ts,b = 0.4 m

Fig. 3. Efficiency of the straight fin of trapezo
cients. Fig. 7 shows an annular fin of constant length and
thicknesses for variable curvature or base radius rb and
mavL = const. (which is achieved by adjusting the coeffi-
cient h).

Some trends in efficiency are those of an ordinary fin,
decreasing with convection coefficient and increasing with
radius. Additionally, in Figs. 3 and 4 we see the effect of
increasing the thickness of the coating. If it is more conduc-
tive than the substrate (combinations #1, #2, #3 in Table
1), an increased efficiency results, at a rate that grows with
the ratio kc/ks. This is quite pronounced for pair #1, whose
ratio is the highest by an order of magnitude. In the oppo-
site situation (combinations #4, #5), a slight decrease
obtains. Concerning the relative performance of different
material pairs, the order consistently seen in the figures
is, from low to high: #1, #3, #2, #4, #5. Looking at Table
1, we note that this is dictated by the conductivity of the
thicker substrate material. (For pairs #2 and #3 the coat-
ing conductivity seems to decide, the difference being the
lowest.)

Figs. 3–7 show both the 2D numerical calculation and
the 1D approximation. Agreement is good for the whole
range of cases tested. If we define a percent error as

e ¼ 100
ga � gn

gn

ð20Þ

maximum values are 1.75% and 1.99% for the straight and
annular fins, respectively. The graphs show that errors
diminish with efficiency, which would indeed make sense,
indicating that the 1D approximation is more accurate
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the lowest the temperature gradients in the composite
material. In fact, maximum discrepancies arise for efficien-
cies lower than 80%, mostly an off-design figure for normal
fin applications. Thus, accuracy of the approximation in
practice will be even better than our maximum error figures
suggest.
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On the other hand, since the magnitude of the error is
strongly related to efficiency, and this in turn varies more
with material combination than it does with geometrical
and thermal parameters, it is not easy to ascertain its
behavior. For example, larger errors arise for material pair
#1, when the average thermal conductivity is the lowest,
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but also the ratio kc/ks is the largest. For the case-studies of
Figs. 3–6, the magnitude of Biav, Eq. (17), ranges from
0.53 � 10�4 to 1.181 � 10�3. Now, if the error e is repre-
sented versus this parameter in Fig. 8, an appreciable
scatter is present and some peculiar trends can be distin-
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guished, but the conclusion is clear: The error grows quite
reasonably as a one-to-one function of the Biot number.

Fig. 9 represents the same fin efficiencies, but now
against the average thermal length mavL in each case. This
shows more simply the 1D approximation: there is almost
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erage Biot number.
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Table 4
Influence of total slenderness (ts,b + tc)/L and geometric ratio tc/ts,b on 2D
fin efficiency

Material tc (mm) tc

ts;b

ts;bþtc

L Straight
trapezoidal fin

Annular
hyperbolic fin

mavL g(%) mavL g(%)

#1 0.04 0.10 0.044 0.7813 80.52 0.7466 74.73
0.05 0.055 80.48 74.67
0.06 0.066 80.45 74.62

#2 0.04 0.10 0.044 0.5632 88.64 0.5525 84.31
0.05 0.055 88.59 84.24
0.06 0.066 88.54 84.18

#5 0.04 0.10 0.044 0.2610 97.16 0.2637 95.88
0.05 0.055 97.09 95.79
0.06 0.066 97.04 95.70

#1 0.04 0.10 0.044 0.7813 80.52 0.7466 74.73
0.06 0.15 80.60 74.82
0.08 0.20 80.68 74.92

#2 0.04 0.10 0.044 0.5632 88.64 0.5525 84.31
0.06 0.15 88.73 84.43
0.08 0.20 88.82 84.56

#5 0.04 0.10 0.044 0.2610 97.16 0.2637 95.88
0.06 0.15 97.04 95.72
0.08 0.20 96.92 95.56
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no scatter in the numerical, 2D values (dots), that seem to
closely follow a single curve, also very close to the 1D for-
mula (continuous line). Although some slight curvature is
perceived in the graphs, discrepancies clearly increase with
decreasing efficiencies, or, as seen in the figures, with
increasing thermal lengths.
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Fig. 10. Fin efficiency under
Another remarkable fact evident in Fig. 9 is that the 1D
approximation, as given by the analytical fin formulae
combined with Eqs. (13) and (16), seems to provide a con-
sistent upper bound for the 2D values. This has been theo-
retically demonstrated for single-material fins [25]; here, it
additionally suggests the adequacy of the arithmetical, vol-
ume-averaged thermal conductivity [7]. It can be seen
indeed, for our annular geometry, that an average with
the area of the profile, which is slightly different in this case,
leads to equally satisfactory approximations but lacks this
property.

Fig. 9 also suggests that some approximation in the gen-
eric form of Eq. (12b) can be better than Eq. (12c), or in
other words, that the definitions of average thermal con-
ductivity and length can be themselves optimized. To
explore this possibly, in one of the many forms that it
can be done, we attempt to evaluate the errors arising when
passing from Eq. (11) to Eq. (12a), and then to Eq. (12b),
to see whether these reduce substantially the inaccuracies
found thus far.

In Table 4, the influences of total slenderness (ts,b + tc)/
L and geometric ratio tc/ts,b on the 2D efficiency are
elucidated separately. Firstly, the fin is made up to 50%
thicker proportionally maintaining tc/ts,b = 0.1 and thus
kav = const. A thermal length mavL = const. is then
imposed by adjusting the coefficient h. In the second place,
the coating thickness tc is doubled over the same substrate,
which gives a ratio tc/ts,b varying from 0.10 to 0.20. Since
the coating is much thinner, the ratio (ts,b + tc)/L is
approximately constant, thus avoiding the need to include
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geometries with different L; the ensuing deviation in effi-
ciency can be shown to be an order of magnitude lower
than that induced by the variation of tc/ts,b. The coefficient
h is again adjusted to give mavL = const. Three different
values of the parameter are specified in both cases, and cal-
culations are repeated for the straight and annular geome-
tries and for material pairs #1, #2, #5, which gives extreme
and middle values of g.

As can be seen in Table 4, the three corresponding val-
ues of fin efficiency for each case do not differ greatly.
Errors are in the range 0.07–0.12% for the first change
and 0.16–0.24% for the second. Therefore, under reason-
able ranges of variation, neglecting total slenderness and
simplifying Eq. (11) to Eq. (12a) is completely reasonable,
as in ordinary fins. Further neglecting the geometric ratio
in Eq. (12a) roughly introduces a doubled uncertainty,
but this is still of course a very low figure.

Finally, to isolate the influence of the conductivity ratio
kc/ks, we simulate the 2D efficiency for all material pairs
with a fixed substrate and variable coating thickness,
adjusting one more time the convection coefficient to
impose a fixed value of the thermal length. Results are
shown in Fig. 10. Maximum deviations are on the side of
the lowest tc/ts,b, amounting to 0.8% over the average. This
indicates that kc/ks is the highest secondary influence in Eq.
(12a), but indeed secondary: the simplification to Eq. (12b)
is clearly warranted. On the other hand, this deviation
approximately halves the figure found above for the error
introduced by 1D formulae of the class of Eq. (12c).

Of course, all the previous advantages are rather scarce
over a value of 2% maximum uncertainty. Consequently,
although there are better approximations to the composite
fin, the intuitive expedient we have examined in this paper
is already of enough accuracy in practical terms. To further
appreciate the approximation, we have determined an
equivalent fin parameter meqL by numerically solving the
equation resulting from equating the fin 1D formula to
the FEM-computed value of fin efficiency. Subsequently,
an equivalent conductivity keq has been computed from
the assumed relationship

meqL ¼ h
keqðts;b þ tcÞ

� �1
2

L ð21Þ

Fig. 11 is a graph of keq versus the conductivity kav defined
in Eq. (16), showing results corresponding to the cases of
Fig. 9. As discussed above, the value meqL is consistently
higher than the corresponding mavL, and thus keq is always
lower than kav. However, differences are very low, so that
the average conductivity defined in Eq. (16) constitutes a
good approximation.
7. Conclusions

Efficiency of composite fins of tapered profile can be
accurately predicted by a single thermal length, as for sim-
ple fins. The most convenient approach is the ordinary 1D
approximation, calculating the fin parameter with the total
thickness and a volume-averaged thermal conductivity,
Eqs. (13) and (16). This has been demonstrated for practi-
cal fin geometries, dimensions and composite material
pairs, under the following conditions, also representative
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of common practice: maximum Biot number of
1.12 � 10�3, thickness ratios from 0.1 to 0.2, conductivity
ratios from 0.04 to 14, minimum efficiency of 80%. Maxi-
mum errors are always lower than 2%. This generalizes
the method of calculation of composite fins; in fact, since
the 1D approximation is predictably more accurate for
constant thickness, our ranges and error figures can be
applied to any composite fin, of constant or variable pro-
file. Of course, it is understood that standard assumptions
of fin theory apply; other effects, such as non-uniformity of
base temperature, thermal conductivities or convection
coefficient should be studied separately, as in ordinary fins.
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